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Motivation

How to exploit mutiple problem embedded structure?

Tools:

Structure Exploiting Parallel Interior-Point Solver for NLP
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Interior Point Methods (IPM)

Nonlinear Program

min f(x) s.t. c(x) = 0
x ≥ 0

(NLP)

KKT Conditions

▽f(x)−▽c(x)λ− s = 0
▽c

⊤x = 0
XSe = 0
x , s ≥ 0

(KKT)

X = diag(x), S = diag(s)
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Interior Point Methods (IPM)

Barrier Problem

min f(x)− µ
∑

ln xi s.t. c(x) = 0
x ≥ 0

(NLPµ)

KKT Conditions

▽f(x)−▽c(x)λ− s = 0
▽c

⊤x = 0
XSe = µe

x , s ≥ 0

(KKTµ)

X = diag(x), S = diag(s)

Introduce logarithmic barriers for x ≥ 0

For µ → 0 solution of (NLPµ) converges to solution of (NLP)

System (KKTµ) can be solved by Newton’s Method
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Newton-Step in IPM

Newton-Step: Full System





H A⊤ −I

A 0 0
Z 0 X









∆x

∆y

∆z



 = −





▽f +A⊤y − z

c(x)
XZe − µe





where A is the constraint Jacobian, and H is the Hessian of the
Lagrangian function. Θ = X−1S , X = diag(x), S = diag(s).

Newton-Step: Augmented System(IPM) Φd = b
[

H +Θ A⊤

A 0

] [

∆x

∆y

]

= −

[

▽φµ +A⊤y

c(x)

]

Augmented system is sparse and symmetric.
The structure of Newton’s system does not change between
IPM iterations.
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Parallel Linear Algebra for IPM

Newton-Step: Augmented System(IPM)
[

W A⊤

A 0

] [

∆x

∆y

]

=

[

bx
by

]

,W = H +Θ

For a structured problem, if:

Matrix A Matrix W
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Structures of A, W and Φ:
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Structures of A, W and Φ:
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Bordered block-diagonal structure in Augmented System!

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks



Introduction PIPS-NLP Gas Network

Exploiting Structure in IPM

Block-Factorization of Augmented System Matrix







Φ1 B⊤
1

. . .
...

Φn B
⊤
n

B1 · · · Bn Φ0








︸ ︷︷ ︸

Φ








x1
...
xn
x0








︸ ︷︷ ︸

d

=








b1

...
bn

b0








︸ ︷︷ ︸

b

Solution of Block-system by Schur-complement

The solution to Φx = b is

x0 = C−1
b0, b0 = b0 −

∑

i BiΦ
−1
i bi

xi = Φ−1
i (bi − B⊤

i x0), i = 1, . . . , n

where C is the Schur-complement

C = Φ0 −
n
∑

i=1

BiΦ
−1
i B⊤

i

⇒ only need to factor Φi , not Φ
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Paraller Linear Algebra for the Structured Problem

Parallel IPM Implementation: For LP and QP

OOPS: Jacek Gondzio and Andreas Grothey: Exploiting
structure in parallel implementation of interior point methods
for optimization.

PIPS: Cosmin G. Petra and Mihai Anitescu: A preconditioning
technique for Schur complement systems arising in stochastic
optimization.

Now, we have PIPS-NLP for NLP!
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PIPS-NLP
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PIPS-NLP

PIPS-NLP is parallel nonliear IPM solver, based on PIPS for
LP/QP.

Structure comes from (but not limited to)

Stochastic Programming (scenarios)

Problem Characteristics (PDE constraints)

Network (partitions)

Nested structure

Easy access:

AMPL-interface

Pyomo-interface

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Global Convergence of the Algorithm

NLP needs more work to ensure global convergence: filter
technique (IPOPT1), which requires inertia (number of
positive and negative eigenvalue).

Structured Problem: Inertia Detection may be hard.

Inertia(Φ) = Inertia(C ) +
∑

i Inertia(Φi)
Not Clear How to Do it (Central vs. Block-Based)

Schur Complement is Large or Indefinite

1Andreas Wächter and Lorenz T. Biegler. “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear programming”.
In: Math. Program. 106.1, Ser. A (2006), pp. 25–57. issn: 0025-5610.

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks



Introduction PIPS-NLP Gas Network

Global Convergence of the Algorithm

Cases Where Inertia Detection is Difficult (If Not Impossible):

Full System or Individual Blocks are Solved Using Iterative
Schemes, e.g, multi-grid

Numerically unstable on large-scale prob. ( Some linear
system solvers can give us inertia infomation, e.g. MA57, but
its pivot tolerence plays a very important role.)

Reduced Solver is Applied.

Nested Structure.

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Line Search with Filter

Inertia Correction: Rigorous Detection

Check if matrix Φ =

[

W A⊤

A 0

]

has correct inertia. (MA57

or Pardiso)

Increase the regularization term δ in Φδ =

[

W + δI A⊤

A 0

]

,

until its inertia is correct.

Solve system Φδd = b.

dWd test: Relaxed Detection

Check if d⊤Wd has sufficient curvature for global
convergence:
d⊤Wd ≥ θd⊤d , where θ is a constant decreasing by µ.

Increase regularization ‘only’ for the iteration whose
d⊤(W + δI )d < θd⊤d .

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Relaxed Curvature test

Pros and Cons of Relaxed Detection

Pros:
Can accept decent direction d even if current inertia is wrong.
Global convergence is also guaranteeded. Re-factorization is
expensive! > 90% time of each Iter!

Cons:
Cannot guarantee second order optimality condition, but
neither does inertia correction.

In practice?

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Relaxed Curvature test

Pros and Cons of Relaxed Detection

Pros:
Can accept decent direction d even if current inertia is wrong.
Global convergence is also guaranteeded. Re-factorization is
expensive! > 90% time of each Iter!

Cons:
Cannot guarantee second order optimality condition, but
neither does inertia correction.

In practice?

CUTEr test problems.

Energy application.

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks



Introduction PIPS-NLP Gas Network

CUTEr Experiments : (iteration)

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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CUTEr Experiments : (factorization)
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Application.:

Problem Domain Algorithm Objective Iter Fact

building det Buildings d⊤Wd 1.74×103 127 161
LDL⊤ 1.74×103 180 341

building stoch A Buildings d⊤Wd 1.89×103 167 181
LDL⊤ 1.89×103 170 270

building stoch B Buildings d⊤Wd 1.95×103 319 417
LDL⊤ 1.95×103 170 270

IEEE 162cart Power Grid d⊤Wd 1.64×100 23 23
LDL⊤ 1.64×100 104 330

stochPDEgas A Gas Network d⊤Wd 1.73×102 35 35
LDL⊤ 1.73×102 34 35

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Stochastic Gas Networks: Stochastic Structure + PDE Structure

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Line-Pack (Storage) Management

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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PDE Gas Model

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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PDE Gas Model: Objective

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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PDE Gas Model: System Constraint

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Gas Network Problem: Stochastic Structure

(

P0 0F
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Problem (1 Scenario) Problem with |C |+ 1 Scenarios

Control variables are independent to scenarios.
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Numerical Results: Scalability

No.Sce n Obj Iters Time(hh:mm:ss) MPI Proc.
96 1,930,752 1.39×102 42 05:20:01 1
96 1,930,752 1.39×102 41 01:05:35 8
96 1,930,752 1.39×102 40 00:31:15 16
96 1,930,752 1.39×102 42 00:21:02 24
96 1,930,752 1.39×102 41 00:16:13 32
96 1,930,752 1.39×102 41 00:10:59 48
96 1,930,752 1.39×102 41 00:05:53 96

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Gas Network Problem: PDE Structure

Newton-Step: “Augmented System(IPM)” for each scenario

Φi =

[

Wi A⊤
i

Ai 0

]

,∀i ∈ S

where Ai contains PDE constraints.

Split Ai into [Ax Au] (ignore ‘i’), where u is the contral variables
and x is the state variables.

Φidi = bi →





Wxx Wxu A⊤
x

Wux Wuu A⊤
u

Ax Au 0









x

u

λ



 =





bx

bu

bλ





Ax is square and invertible (but not symmetric)
→ Do computation in the reduced space!

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Reduced Space

Solve Problem in Reduced Space!

Step.1: Solve following equation to get u:

(Wuu −WuxA
−1
x Au −A⊤

u A
−⊤
x Wxu +A⊤

u A
−⊤
x WxxA

−1
x Au)u

= bu −A⊤
u A

−⊤
x (bx −WxxA

−1
x bλ)−WuxA

−1
x bλ

Step.2: Solve following equation to get x :

x = A−1
x (bλ −Auu)

Step.3: Solve following equation to get λ:

λ = A−⊤
x (bx −Wxxx −Wxuu)

No LDL⊤ of φi → Ax is isolated → A−1
x can be obtained by user

defined algorithm.
Dense LU for reduced hessian (Lhs matrix in Step 1)

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Numerical Results

No.Sce n Obj Iters Time(hh:mm:ss) MPI Proc.
96 1,930,752 1.39×102 42 00:29:54 8
96 1,930,752 1.39×102 42 00:14:45 16
96 1,930,752 1.39×102 42 00:10:00 24
96 1,930,752 1.39×102 42 00:07:36 32
96 1,930,752 1.39×102 42 00:05:14 48
96 1,930,752 1.39×102 42 00:02:54 96

Table: Scalability: Reduced space (Umfpack is applied to do LU
factorization and corresponding backsolve.)

No.Sce n Obj Iters Time(hh:mm:ss) MPI Proc.
96 1,930,752 1.39×102 42 01:13:16 8
96 1,930,752 1.39×102 42 00:38:18 16
96 1,930,752 1.39×102 42 00:24:55 24
96 1,930,752 1.39×102 42 00:19:23 32
96 1,930,752 1.39×102 42 00:12:42 48
96 1,930,752 1.39×102 42 00:06:48 96

Table: Scalability: Full space

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Numerical Results

No.Sce n Obj Iters Time(hh:mm:ss) MPI Proc.

200 3,917,328 1.20×102 55 00:27:16 20

200 3,917,328 1.20×102 55 00:14:16 40

200 3,917,328 1.20×102 55 00:06:01 100

200 3,917,328 1.20×102 55 00:03:14 200

Table: Scalability: Reduced space (Umfpack)

No.Sce n Obj Iters Time(hh:mm:ss) MPI Proc.

200 3,917,328 1.20×102 55 01:01:33 20

200 3,917,328 1.20×102 55 00:31:11 40

200 3,917,328 1.20×102 54 00:12:36 100

200 3,917,328 1.20×102 55 00:06:38 200

Table: Scalability: Full space

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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AMPL Input
Generate NL file from AMPL:

# define suffixes:
suffix pipsNLP DecisionVar in, IN;
suffix pipsNLP 1stStageVar in, IN;
param idx 1stVar;
param idx decVar;

# assign suffixes for each scenario;
for k in 1..K All do

let idx 1stVar := 1;
let idx decVar := 1;

# define first stage variables
for i in LINK,t in TIME: t ≤ TDEC do

let dp[j,i,t].pipsNLP 1stStageVar in := idx 1stVar;
let idx 1stVar := idx 1stVar + 1;

end for

# define contral variables in each scenario
for i in LINK,t in TIME: t > TDEC do

let dp[j,i,t].pipsNLP DecisionVar in := idx decVar;
let idx decVar := idx decVar + 1;

end for

# write nl file
write (”bpdegas paper Dec”& k);

end for

Straightforward and ‘no’ additional time for ordering derivatives (<0.1s

for gas model)
Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Conclusions

PIPS-NLP

Parallel NLP solver.

Accept multiple structure, e.g: PDE constraints + network
constraints.

Support AMPL/PYOMO input.

Other applications: parameter estimation, general stochastic
optimal contral problem, robust dessign and network
partitioning.

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks
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Conclusions

PIPS-NLP

Parallel NLP solver.

Accept multiple structure, e.g: PDE constraints + network
constraints.

Support AMPL/PYOMO input.

Other applications: parameter estimation, general stochastic
optimal contral problem, robust dessign and network
partitioning.

Future Work

Exploit multi-stage stochastic structure and multi-grid
multi-level algorithm for problems with PDE and network
constraints.
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Conclusions

Thank you for your attention!
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